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Abstract 

Harper's operator is the self-adjoint operator on 12(7/) defined by Ho,o~(n) = ~(n + 1) + se(n - 
1 ) + 2 cos(2zr(n0 + (p))~(n) (~ ~ l 2 (7/), n 6 7/, 0, (p c [0, I ]). We first show that the determination 
of the spectrum of the transition operator on the Cayley graph of the discrete Heisenberg group in 
its standard presentation, is equivalent to the following upper bound on the norm of Ho.O: II n0.~ [I -< 

2( 1 + x/~ + cos(2zr0)). We then prove this bound by reducing it to a problem on periodic Jacobi 
matrices, viewing Ho,o as the image of 11o = Uo + U~ + Vo + V~ in a suitable representation of 
the rotation algebra .,40. We also use powers of Ho to obtain various upper and lower bounds on 
II H~ II = max~ II/-/o4,11. We show that "Fourier coefficients" of H0 k in .Ao have a combinatorial 
interpretation in terms of paths in the square lattice 7/2. This allows us to give some applications to 
asymptotics of lattice paths combinatorics. 

Subj. Class.: Quantum Mechanics 
1991 MSC." 60J15 
Kevwords: Heisenberg group; Harper operator; Random walk 

0. Introduction 

For a finitely generated group F endowed with a finite generat ing subset  S which is 

symmetr ic  (S = S - l ) ,  we consider  the Markov or t rans i t ion  operator h s o n / 2 ( F )  given 
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by hs~(x )  = (1/ISI) Y~s~S ~(xs)  (this is the transition operator associated with the sim- 

ple nearest neighbour random walk on the Cayley graph G(F,  S), J i.e. the random walk 

starting from the origin and, at each step, moving with equal probability from one vertex 

to one of  its neighbours). It is known since the work of  Kesten [Kes59b,Kes59a] that the 

spectrum of the self-adjoint operator hs contains much information about the pair (F ,  S). 

For example, one has IIhsII = 1 iff F is amenable; if one can write S = S + IJ (S+) - t  

(disjoint union), with IS+l = n, then v / ~  - -  1/n < IIhsII and, provided n > 2, equality 

holds iff F is the free group on S+; in that case one has 

n 

See [HRV93a,HRV93b] for other results relating spectral properties of  hs  to group the- 

oretical properties of  (F ,  S). However, for infinite groups there are relatively few cases 

where exact computations of  spectra of  transition operators have been performed (not to 

mention the computation of  the spectral mesure, that would be the next step). We are 

basically aware of two classes of  groups where this was done: virtually abelian groups, 

where one reduces to an abelian group of  finite index and then uses Fourier analysis tech- 

niques, and virtually free groups, where one can appeal to the combinatorics of  trees. The 

paper [CV] illustrates the difficulty of  treating other non-amenable examples like surface 

groups. 
In this paper we consider a classical example of  a step 2 nilpotent group: the discrete 

1 n Im, n, pEY- 

0 1 

Heisenberg group 

with generating subset 

{ (i0i) S =  x +l = 0 ,Y+l = 1 1 ,z  --l = 0 1 . 

0 0 0 0 0 1 

For the corresponding operator hs,  we prove: 

Proposi t ion 3. Sp hs  is an interval [m, !] with m = ½ ( -  1 - ,v/2) = - 0 . 8 0 4 7 3 7 8 5 4 . . .  

The value of  m was obtained by relating hs  to Harper's operator. 

Harper's operator is the operator Ho,ea (0, 4) c [0, 1]) on 12(7/) given by (Ho,c~)(n) = 

~(n + 1) + ~(n - 1) + 2 cos 2:r(nO + 49) • ~(n) (~ ~ 12(7/), n 6 77). It is one of  the most 

studied discrete Schrrdinger operator, both in the physics and mathematics literature (see 
[Be191,Shu94] for recent surveys). An impressive wealth of  numerical data is available 

1 Recall that ~(F, S) is the graph with set F of vertices, and set {{x, xs): x ~ F, s ~ S) of edges. 
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Fig. 1. The functions 0 ~ f26 (0), 0 ~ II Ho II, 0 ~ 2( I + 21/2 + cos 2Jr 0). 

339 

concerning the spectrum of Ho,¢~ (leading in particular to the famous "Hofstadter butterfly" 

[Hof 76]). We will first show that our Proposition 3 is equivalent to: 

Proposition 4. Forany  O, ¢9 ~ [0, 1], IIn0,~ll ~ 2(1 + x/~ + cos(2Jr0)) with equali~.'for 

o=½,¢=o. 

For 0 irrational, II Ho,o II does not depend on q~ (see [Rie81 ]), but it does for 0 rational. 

One may unify both cases by considering the two-dimensional Schr6dinger operator H0 on 
12(Z2) defined by 

H o t ( m , n )  = ~(m + l, n) -t- ~(m - 1, n) + ei°m~(m, n - 1) + e- i°m~(m,  n + 1) 

C /2(2v2), m, n E 7/. 

For any 0, one has (see [Bel91], or Lemma 3 below) IIn011 = max4, IIn0.~,ll so that the 
I Proposition 4 is equivalent to 1114o rl -< 2(1 + ~ + cos(2sr0)), with equality at 0 = ~. 

Figure 1 gives striking experimental evidence for that statement; but one has to be aware 

that the curve 0 1 ~ II 1-1o II was plotted by computing II 14o II for some rational values of 0, and 

then linearly interpolating, so that there is really something to prove in Proposition 4. The fact 

that the function 0 1 ~ II 14o II is quite irregular (however continuous) causes difficulties in 

tackling Proposition 4 with the classical tools of  calculus, so that our approach will be mainly 

C*-algebraic. We first view hs  as an element of  the reduced C*-algebra 2 Cr* (F).  Now, since 
F" = H(7/) is amenable, C ~ ( F )  is . - isomorphic to the full C*-algebra C*(F) ,  which is the 

universal C*-algebra generated by three unitaries x, y, z satisfying the commutation rule 

x. y = z- y .x  with z central. For each 0 6 [0, 1 ], denote by .Ao Rieffel's rational or irrational 
rotation algebra [Rie81,Rie90], i.e. the universal C*-algebra generated by two unitaries Uo, 

2 That is the C*-algebra generated by the left regular representation of/" on/2(/.). 
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VO satisfying the commutation rule VoUo = e2ni°uo Vo. We may view the operator Ho as 

the element Uo + U~ + Vo + V~ in .Ao (this is a key fact in the C*-algebraic approach 
to Ho, see e.g. [RB90,CEY90]). There is an obvious . -homomorphism rr0 from C*(F) 

onto .Ao, defined by zro(x) = Uo, fro(y) = Vo, zro(z) = e -2rri0 • 1. Moreover, zro(hs) = 
I I-L, ~( 0 + 2cos  2zr0); the fact that (Jr0)0cI0,U is a separating family of  representation then 

explains the link between the spectrum of hs and the spectrum of the 11o's. 

Our paper is organized as follows. In Section 1 we digress on the Kaplansky-Kadison 

conjecture of idempotents for reduced C*-algebras of  torsion-free discrete groups, and 

explain its relevance to simplify computations of spectra of  transition operators (it asserts 
that such spectra are intervals); we also give a new proof of this conjecture for torsion-free 

finitely generated nilpotent groups (in particular for H(Y)).  
In Section 2, we elaborate on the above connection between the operator h s ~ C * ( H  (77)) 

and Harper 's  operator, and we establish the equivalence between Propositions 3 and 4. 

In Section 3 we prove Proposition 4. 
In Section 4, we look at powers of  14o in ./to; this enables us to give other upper bounds 

on the function 0 > II 11o II. Powers of  Ho are linear combinations of monomials U~ n V0 n, 
whose coefficients have a combinatorial meaning in terms of paths from the origin in the 
square lattice 772. In particular, for m = n = 0, one gets the canonical trace of  H ffk as a 

trigonometric po lynomia i f  2k (0) whose/ th coefficient is the number of closed paths through 

(0, 0) in 772, with length 2k and enclosed oriented area l. We also show that the family of C °~- 

functions fk (0) approximates uniformly and from below the irregular function 0 1 > II no II. 

The function f26 is also plotted in Fig. 1. 
In Section 5, we give combinatorial applications of  the results of  Section 4, first to a family 

of  6-regular finite graphs covered by ~ (F ,  S), second to lattice paths combinatorics in 772: 

we give asymptotic behaviours for the logarithms of a number of  expressions involving the 
number of  closed paths of  length 2k with area satisfying congruence relations modulo a fixed 
argument. For example, if N(2k)  ev (resp. N(2k) °d'l) denotes the number of  closed paths 
through (0, 0) with length 2k and even (resp. odd) enclosed area, we have that log(N(2k) ev - 
N(2k)°da), behaves asymptotically like k log 8. 

I. A digression on the conjecture of idempotents 

The conjecture of  idempotents or Kaplansky-Kadison conjecture states that the reduced 
C*-algebra CT(F) of a torsion free group/~ has no non-trivial idempotent (see [Va189] for 
a survey). For F a finitely generated, torsion free nilpotent group we know of at least four 
different proofs of  this conjecture : via K-theory [Ros83], via harmonic analysis [KT89], 
via C*-algebra theory [JP90] and via cyclic cohomology [Ji92]. In the special case of  
H (Y), there is a proof  due to Bellissard [Be188] with a non-commutative differential flavour 
(Streda's formula). We propose one more proof so that the result has a chance of being 
correct. 

Proposition 1. Let F" be a finitely generated torsion-free nilpotent group. Then C* ( F) has 
no idempotent except 0 and 1. 
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Proof Let G be a connected Lie group; Kasparov has defined the commutative ring R(G) 

of Fredholm representations of  G (see [Kas88]). R(G) is a unital ring, with a distinguished 

idempotent YG such that ycRG is isomorphic, via restriction, to the representation ring 

R(K)  of the maximal compact subgroup K of  G. The element I - Y6 of  R(G) is the 

celebrated Kasparov obstruction of  G. It is known [BC82,VaI89] that if 1 - Yc = 0, then 

the Kaplansky-Kadison conjecture holds for any torsion-free discrete subgroup of  G. On 

the other hand, it is a fundamental result of Kasparov that 1 - Yc = 0 if G is amenable 

(e.g. nilpotent). Now, let F be a finitely generated, torsion-free nilpotent group, and let G 

be the Malcev completion of  F ,  i.e. the unique connected nilpotent Lie group in which F 

embeds as a lattice 3 (see [Rag79]). It follows from the previous remark that 1 - V~; = 0, 

so that the Kaplansky-Kadison conjecture holds for F.  [] 

The link between the conjecture of idempotents and spectral properties of  elements in 

C,* (F)is  provided by the following easy lemma. 

Lemma 1. Let A be a unital Banach algebra, the.following properties are equivalent: 

(i) A has no idempotent except 0 and I. 

(ii) The spectrum of  every element in A is connected. 

If  moreover A is a C*-algebra, this is still equivalent to: 

(iii) The spectrum of  every self-adjoint element of  A is an interval. 

Proof For (i)¢=~(ii) use holomorphic functional calculus; if A is a C*-algebra then (ii)=*(iii) 

is clear, and (iii)==~(i) follows from the fact that any idempotent in A is equivalent to a self- 

adjoint idempotent. [] 

2. From the spectrum of a random walk on H(72) to the norm of Harper's operator 

From now on, we denote by F the Heisenberg group H(72). The group F admits two 

natural presentations : 

F = (x,  y: [x, [x, y]] = [y,  [y,  x l ]  = 1) 

= ( x , y , z : z = [ x , y ] , [ x , z ] : [ y , z ] =  1). 

It is a simple exercise to compute the spectrum of the Markov operator associated with 

the first presentation, i.e. the transition operator on the Cayley graph G(F.  S0) with So = 

{x, y , x  1 , y - J } . T h i s o p e r a t o r i s h s 0 : ¼ ( x + 3 ' + x - J + Y - I ) c C * ( F ) .  

Lemma2.  Sp(hso) = [ - 1 ,  1]. 

Proof Let Z ( F )  be the centre of  F ;  the quotient map ~: F > F / Z ( F )  _~ 72 2 does induce 

a , -homomorphism ff from C*r(F) onto C* (722). Then ~(hso) = ¼ (or (x) + ~ ( x - J  ) + o r ( y ) +  
or(y- l ) ) ;  since {or(x), or(y)} is the canonical basis of  722, it is an elementary exercise on 

3 For F = H(7/), G is the standard three-dimensional Heisenberg group. 
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Fig .  2.  

Fourier transform that Sp(~(hso)) = [ -  1, 1 ]. Then [ -  1, 1 ] _ Sp(hso) and since Ilhs0 II 5 1, 
equality holds. [] 

We now consider the spectrum of the Markov operator associated with the second pre- 
sentation of F (this presentation is well suited to the embedding of F as a lattice in the 
three-dimensional real Heisenberg group). Set S = {x, y, z, x -  I, y -  l, z -  1 }; the Cayley 

graph • (F ,  S) is sketched in Fig. 2. 
The transition operator is h s = ~ (x + y + z + x -  1 --t- y -  l + z -  I ) • C* (F) .  One of our 

motivating questions was: how does the spectrum change when hso is replaced by hs, i.e. 
when the extra generator z is added. 

Proposi t ion 2. Sp(hs) is an interval [m, 1] with -1  < m. 

Proof By Proposition 1, there is no non-trivial idempotent in C,* (F)  so that, by Lemma 1, 

Sp(hs)  is an interval [m, M] with - 1  < rn < M < 1 (because Ilhsll _< 1). Since F is 
amenable, one has 1 • Sp(hs)  by Kesten's characterization of amenability [Kes59b,Kes59a]. 
Finally, one has - 1 < m because the graph G(F ,  S) is not bipartite (see [HRV93a, Propo- 

sition 5.2]). [] 

We will ultimately get the following value for m. 

Proposi t ion 3. m = ½ ( -  1 - ~/~) = - 0 . 8 0 4 7 3 7 8 5 4 . . .  

Recall from the introduction that, for any 0 • [0, 1], the C*-algebra ,Ao appears as a 
quotient of  C*(F) via the map 

7/" 0 

c *  ( r ) ~ .4o 
X I )' Uo 

y I ~ Vo 
Z I ) e - 2 z r i 0  
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The family of  representations (rro)o~[o, I] of  C* (F)  is separating, so that for any self-adjoint 

element h of  C*(F), one has 

Sp(h )=  U Sp(rro(h)) (1) 
0~[0.1] 

(the relevance of the .A0's in the representation theory of  C*(F) was one of  Rieffel's 

motivation in [Rie81]). For 0 c [0, 1], one has 

rro(hs) = I [Uo + U; + Vo + V; + 2cos2 r r0 ] .  

In the faithful representation of  .,4o on /2(~_2) given by Uo~(m, n) = ~ ( m -  1, n) and 

V,~(m, n) = eZ~ri°m~(m, n - 1), the self-adjoint operator Uo + U~ + Vo + V~* is mapped 

precisely to the operator 14o from the introduction, so from now on we set 11o = Uo ÷ U~ + 
V~ ÷ V0*. Plotting Sp(Ho) against 0 reveals numerically an amazing butterfly-like structure, 

first observed by Hofstadter [Hof 76]. Among the qualitative results proved about Sp(Ho), 
we quote the following : 

- For 0 = p/q (p, q coprime integers), Sp(Ho) is a band spectrum consisting of either 

q - 1 intervals (for q even) or q intervals (for q odd): see [CEY90], and Remark (3) in 

Section 3. 

- For a set of  irrational O's with Lebesgue measure 1, Sp(Ho) is a Cantor set with measure 

0; see [Las94] (note that it is a famous conjecture of Marc Kac, known as the Ten Martinis 

problem, that this holds for any 4 irrational 0). 

According to formula ( 1 ), to compute Sp (h s) we have in principle to consider Sp (14o), shift 

it by 2 cos 2rr0, take the union of  these sets overall O's, and form the closure. But actually, this 

is asking for too much, since by Proposition 2 we a priori know that Sp(hs) is an interval. 

If m(O) denotes the bottom of the spectrum of Ho, we have m = inf0~10,11 ~(m(O) + 
2 cos(2rr0)). By symmetry of Sp(Ho) 5 we have m(O) = -IlH#ll and therefore 

- m  = suP0c[0, ½1 1 (l114o l[ - 2 cos(27r0)) (2) 

(the restriction to [0, ½] is due to the ,-automorphism 

.A0 --~ .Ai-0: / U w-~ V that maps Hu to Hi-0) .  
/ Vw-~ U 

The following facts are known about the function 0~ ~ II 14o II (which describes the 

boundary of Hofstadter's butterfly): 

- It is continuous [El182]; in particular the supremum in (2) is attained. 
- It is Lipschitz continuous [Be194] 6, in particular 0 1 ~ 14o is almost everywhere differ- 

entiable. 

4 Last probably deserves 9.9999... of the ten Martinis... 

5 The involutive ,-automorphism of .A0 given by I U ~ - U  V ~ -V  mapsH0to-/4o. 

6 Bellissard conjectures that 0 ~ 14o is differentiable at any irrational 0. Note that there is no known 
estimate on the Lipschitz constant; by way of contrast, Avron et al., JAMS90, Proposition 7.11 earlier 
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- It is not differentiable at any rational values of  0 although it admits there a left and a right 

derivative; this follows from the "Wilkinson-Rammal formula" (see [RB90,HS90]). 

The lack of  regularity of the function 0 ~ > Ho makes the computation of  the maximum 

of 0 ~ > II tlo II - 2 cos 2~r0 quite difficult• We first solved this extremal problem graphically, 

getting the empirical result that the maximum is attained at 0 -- ½. Now it is an easy exercise 

on 2 × 2-matrices to compute Sp(Ht/2)  and to get I}H1/2[I = 2 ~ .  So the experimental 

result, that will be eventually proved in the next section, is: 

Proposit ion 4. maxo~lo,1/21(llno II -- 2cos2zr0)  < 2(1 + x/2) with equality at 0 = 1. 

In other words: for any 0 6 [0, ½], liB011 _< 2(1 + x/2 + cos2:r0) .  In view of  (2), 

Propositions 3 and 4 are equivalent. 

3. Validity of  the upper bound on II Ho II 

First, let us recall that for 0 = p / q  ~ [0, 1] rational, there is a faithful representation 

of  ¢4p/q a s  a matrix algebra over the torus: .Ap/q is the C*-subalgebra of  A4q(C(T))  (the 

q x q matrices with coefficients in the continous functions on the two-dimensional torus) 

generated by: 

M U ( Z l , Z 2 ) = Z l  • /2° (Z °i/0 P , M v ( z l ,  z2) = z2 • 

• "'" pq!-I "'" "'" 
0 . . .  . . .  1 

with p = e 2~ri0 and (zl, z2) ~ 3 -2. The operator Hp/q is then identified with the family of  

periodic Jacobi matrices: 

MH(Zl,  Z2) = 

¢'ZI-I-Z'~ Z'~ 0 • ' ' 0 Z2 

Z2 P Z l  +pz-----I " ~  " " " 0 0 

0 ~2  p 2 z l + p 2 z  I • • • 0 0 

• • ° , • . 

0 0 0 • • • p q - 2 z l ~ - p q - 2 z  I " ~  

- ~  0 0 • • • Z2 p q - l z l q - p q - l z l  

At this point, we explain the link with Harper's operator Ho,~ mentioned in the introduc- 

tion. For 0 = p /q ,  the operator Ho,4~ is periodic of period q, meaning that it takes the form 

obtained the weaker statement that 0 ~ 11o is H61der continous of exponent ½, with the explicit constant 
6V'2. 
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q-I 
of  a q x q scalar matr ix in the decompos i t i on /2 (Y)  = ~ i = 0  12(q y + i). Now this matrix 

is precisely M r / ( e  2zri4', 1). We want  to prove:  

P r o p o s i t i o n  4. max0c[0,1/2] (1114o II - 2 cos 27r0) < 2( 1 + v/'2). 

Using the cont inui ty o f  the funct ion 0 w-~ II 14o II it will  be enough  to show that tl H ,  II - 

2 cos 2zr0 < 2(I + 4 ~ )  for any rational 0. We will  need the fo l lowing lemma.  

Lemma 3. For 0 = p/q, the maximum of [] MH (z j, z2)ll is attained for z I = z2 = 1. In 
other words, one has 11/4011 = IIn0,011. 

Proof The norm of  Mr / ( z  I ,  z 2 )  is g iven by the m a x i m u m  absolute value of  the eigenvatues.  

Since  Mr/( - -z l , - z2)  = - M r / ( Z l ,  z2), we may assume that IlMr/(zl, z2)]l is given by 

the largest e igenvalue.  (For  q even,  the spectrum of  MH(Z 1, Z 2 )  is actually symmetr ic ,  

as shown on p.233 of  [CEY90].)  The  characteris t ic  polynomia l  o f  Mr/  is of  the form: 

pM, (x) ---- de t (Mr /  - x l )  = Y-~q=0 akxk where  all the ak 's  except  a0 are independent  of  

zl and z2, and with aq = ( - 1 )  q, a0 : ( - - l ) q + l ( z  q q'- Z I q + Z q q -  Z2 q) -}- K,  where  K 

is a constant  7 only depending  on q. When  q is even PMtt (x) iS a polynomia l  with real 

coeff icients  and aq = I ,  therefore its largest root is attained when ao --- ( - 1 ) ( z  q + z l  q + 
zq2 + z 2  q) + K is the smallest,  i.e. when Zl = z2 = 1. When  q is odd PMn(x) is a 

polynomia l  with real coeff icients  and aq : - -  I ,  therefore its largest root is attained when 

a0 = Zg -]- Z/q  q- Z q q- Z2 q q'- K is the largest, i.e. when zl = z2 = 1. [] 

We now are able to prove Proposi t ion 4: 

Proof of Proposition 4. We s e t 0  = p/q ~ [0, 1], Ck = cos(27rk(p/q)), 

(2Co 1 0 . . .  0 i ] 
1 2 C l  1 • • • 0 

0 i 2C2 • • • 0 
m = . . . . . . 

0 0 0 • • • 2Cq_2 
1 0 0 . . .  1 2 C q - l J  

and ot = IIMII. By L e m m a  3 we have to prove that ot - 2Cl  _< 2(1 + ,,/~). Note  that 

the norm of  the first co lumn of  M is ~ (or ~ if  0 = ½), so that ~ = []M[[ > 2. Let  

v = (v0, v i . . . . .  Vq_ l ) be an e igenvec tor  o f  e igenvalue  ~. Let  vk be the greatest  componen t  

in absolute  value, we may assume that vk > 0 (replacing v by - v  if  necessary).  As  Mv = etv 
we get  vk-I + 2CkVk q- Vk+l -~ OtVk where the indices are taken mod  q. As ot > 2 we have 

7 For q odd one has K = 0, see [CEY90, 3.3]. Note that it is claimed there that this formula holds for any 
q, but computations with q ---- 2 or q = 4 show that this is not the case. 
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v~±l = :  max(vk_l, Vk+l) > 0 and 2Vk±l + 2Ckvk >_ CtVk. The same relation for vk±j 
gives: 2vk + 2Ck±l vk±j > otvk±j. So we get the two inequalities (or - 2Ck)vk < 2vk±l, 
(or -- 2Ck±l )Vk±l < 2vk and since by hypothesis everything is positive we can multiply both 

inequalities and get 

(or - 2Ck)(ot - 2Ck±j) < 4. 

Recall that we want to show ot - 2Cl -- 2(1 + q"2) < 0. Suppose by contradiction that 

o t - 2 C l - 2 ( 1 + v ~ )  > 0, thend  = - o t + 2 C l  + 2 ( 1 + 4 ' 2 )  < 0 a n d a s  ( o t + d - 2 C k )  > 0 

and (or + d  - 2Ck±j) > 0 we would get 

(or + d  - 2Ck)(ot + d  - 2Ck±l) < (or -- 2Ck)(a - 2 C k ± l )  _< 4, 

i.e. 

o r  

(2CI + 2(1 + x/2) - 2Ck)(2Cl + 2(1 + v/2) -- 2Ck±l) < 4 

(1 + x/~ + cos(x) -- cos(y))(1 + x/2 + cos(x) -- cos(y+.+.+~)) < 1, 

where x = 27rp/q and y = 2zrkp/q. A rather delicate but straightforward analysis (see 

Aappendix A) shows that 

(1 + x/2 + cos(x) - cos(y))(1 + x/2 + cos(x) - cos(y_+x)) > 1 Yx, y ~ [0, 2zr] 

giving a contradiction. [] 

Remarks .  

(1) Despite the abundant literature regarding spectra of  periodic Jacobi matrices (see 

[AS82,Moe76] and the references therein), we are not aware of any estimation of 

spectral radius similar to Proposition 4. 

(2) Based on numerical evidence (see Fig. 1), we conjecture that the stronger bound JJ Ho JJ < 

2x/2 holds for 0 6 [¼, ½] (with equalities at both ends). The Wilkinson-Rammal 

formula (see [RB90]) shows that the right derivative of  JJ 14o JJ at ¼ (resp. the left derivative 

at ½) is negative (resp. positive), so that this bound certainly holds on a neighbourhood 

of  1 (resp. ½). Note that the bound JJH01[ _< 2(1 + V'2 + cos 2zr0) is better than the 
obvious bound JJH0 JJ _< 4 only fo r0  E [0.317972, ½]. 

(3) For 0 = p/q, set q ---- 2m + 1 i f q  is odd and q = 2m + 2 i f q  is even. It is proved 

in Theorem 3.3 of  [CEY90] that Hp/q has exactly 2m gaps in its spectrum, and that 

each gap has length at least 8-q.  Actually the argument on p.233 of  [CEY90] shows 
the following: 

- i fq  is odd, the length of  any gap is at l e a s t  (2[[Hp/q[J)-q+2; 
- if q is even, the length of  any gap is at least 2 -m [[ Hp/q II I-2m 

So for 0 close to ½ and rational, our Proposition 4 gives a substantially better lower 
bound on the length of  gaps in Sp(Ho). 
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See Section 5 below for potential applications of  Proposition 4 to combinatorics. 
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4. Powers of 11o 

Fix 0 E [0, 1] and set p = e 2hi0. Any element X in the C. -a lgebra  .A0has a "Fourier ex- 

pansion": X Zrn ,nE~Cm,nUmV n. In particular we have for k 6 ~,  1to k Y~m,,,cz Ik~ 

( p ) U  m V n where a~)n (p) is a trigonometric polynomial in p. We are going to give a com- 

binatorial interpretation of a~)n (p). An oriented path in 772 will be an oriented polygonal 

path in ~2, with all vertices and segments contained in the square lattice grid determined by 
,.(k) the set of  all oriented paths in 772, of length k. 7/2 in R 2. For (m, n) E 772, denote oy/"(m,n) 

starting at (0, 0) and ending at (m, n). We also denote by Y(m,n) the oriented path in 772 with 

only vertices (m, n), (m, 0) and (0, 0) so that the starting point of  Y(m,n) is (m, t/) while 
~(k) its endpoint is (0, 0). For y E Z~(m,m, we denote by y • Y(m,~) the closed path obtained by 

composing y with ~/(m.n), and we denote by A ( y  • V(m,n)) the oriented area enclosed by 

Y "Y(m,,,), i.e. a ( y  • Y(m,n)) = fz×~,, , , ,xdy = -f×v,,,,,,, y d x .  

Proposition 5. 

E 
FEE ~).n) 

F (k) "A(v  • Y(m,n))  =" 1}. p-a(y'y(m.,)) = Z p - l # { y  E ~(m.n)" 
IEY 

R e m a r k .  Recall that .4o carries a faithful tracial state r0: for an element X = ~m,, ,J_ Cm, n 

U m V n of .Ao one has r0 (X) = c0,0. (For 0 ¢~ Q, the trace ro is the unique tracial state 

on .Ao, see [Rie81] for all these.) The combinatorial interpretation of ro(Ho k) = a Ik) is 0,0 

especially appealing: r(k) is the set of closed oriented paths in 77 2, based at (0, 0) and with ~(0,0) 
length k and 

r ° ( H ° k ) =  Z p - A ( y )  
~(k) 

YEL(0,0) 

= t'(k) " A(V)  = I} • 2 cos 2nlO. r(k) "A(y )  0} + Z # { y  E ~(0,0)" = #{y E -(0,o). 
/>l 

The final formula follows by reordering the first summation according to values of  A (y),  
and noticing that reversing the orientation of paths induces a bijection between #{y E 

k " A ( y )  = -1}. Bellissard and Zelditch informed us that ~--'~m,n): A ( y )  = 1} and#{F E ~--'(m.n)" 
they were aware of  this combinatorial interpretation of To (14o k). 

Proof o f  Proposition 5. Suppose we expand 14o k = (Uo + Uo I + Vo + g0-1) " '"  (Uo q- 

Oo  1 -3 t- go "[- Vo -1)  in m o n o m i a l s  Uo 1|Tjll[i2Wj2"O ~0 "0 "'" or V/IUolVj2Uo 2 . . . ;  one of these 

monomials will contribute to a~)n(p) iff it is of  bi-degree (m, n), i.e. il + i2 + . . . .  m 
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and jl + j2 + . . . .  n. To any such monomials U o' V/' U~ 2 V j 2 . . .  we associate a path 
k F ~ £'(m,n) with vertices (0, 0), (il, 0), (il, j l ) ,  (il + i2, j l ) ,  (ij + i2, jl + i2) . . . .  Let us 

give two examples. 

(0.3) 

(o.o'~ 

U 3 V 2 U o 2 V o  I Uo V 2 U o  2 gives: 
v 

(3.0) 

where A(F • F(0,3)) = 9, 

and U3o Vff Uo I Vo I Uo I VoUo VoUo 2" 

(o,3] 

('o,o) 
II 

where A(V • }'(0,3)) = 7. 

k Conversely to any path F 6 •(rn,n) we associate such a monomial of  bi-degree (m, n) in 

the expansion of  H 2k. Let us reduce/do 1 V0 j '  U f  V f 2 - . .  using the commutation relations. 

Uoill]Jlll i2|] j2 tg i2JlOol+i2gj l+J2o~3gj3 . . .  
"0 ~0 "0 "" 

= p i2 j l+i3(J ,+J2)uo,+i2+i3vj ,+J2+J3uo4vJ4. . .  

= pi2jl+i3(Jl+J2)+i4(jl+j2+J3)f~l+i2+i3+izvJl+J2+J3+J4u05.. .  

For 2/the associated path one computes 

- A ( F  • Y(m,n)) = ~ y dx = i2jl + i3(jl + j2) + i4(jl + j2 + j3) + . . .  

Y'Y(m,n) 

The computation for a monomial V0 )j U0 j uj211i2 • is entirely similar. This proves the • 0 ~0 "" 
first equality. To get the second, just reorder the first summation according to values of  

A(Y " Y ( m , n ) ) .  [] 

Let us conclude by giving some properties of  the coefficients a~)n (p), using the above 
combinatorial formula and the following lemma : 
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L e m m a  4. The coefficients a~,)n(p) satisfy the recursion formulas:  

a ( k - 1 )  - ( k - l )  . P m ( k - l )  . p - m  
a(mk, ) ( p )  = m - l , n (P )  +a(mk+ll,). (p) + a m , n - l ( P )  +am, t ,+ l (P)  

a(~qn(P)=a(k-1)  p n _ a ( k  I ) . .  / 9 - "  ( k - I ) . .  , ( k - l ) . .  
• m 1,n ( p ) "  t m+l,n[P)" +am.n- l [P) - t -am,n+l~P)"  

Proo f  Using the commutation relation VoUo = pUo Vo and the trivial equalities Ho k = 
Ho • 14o k J and Ho k = 14o k - I  • Ho, the proof is a straightforward computation. [] 

Then one can easily prove the following result. 

Proposition 6. For any m,  n c Z, k >_ 1 • 
(a) a~)n(p)  (k) 

, = an, m (P), 
(b) a ~  ) ( p - l )  (k) p-ran, . = am,n (P) " 
(c) a'k)m,,,(p) = a~)n(p  -1)  and a~,)_n (p) = a~,)n(p- l ) .  

Proo f  
(a) The equality is trivial for k = 1, then by induction on k and using Lemma 4 one gets 

a (k) (n~  ( k - l )  . . _ a ( k - 1 )  . . ( k - l )  pm - - a ( k - I )  - - p - m  
m.n r ~ = a m - l , n ~ P )  5- m + l , n [ P ) + a m , n - l ( P ) "  5- rn.n+l~p)" 

( k - l )  . . . + _ a ( k - l )  , . ( k - l )  p m  ( k - l )  p - m  
= a n . m - I ~ P )  n,m+l~P) @ a n - l . m ( P )  " +an+l . m(P)"  

(b) As in (a), the proof is an easy induction on k, using both recursion formulas of  Lemma 4. 
k (c) The symmetry ot given by (x, y) l > ( - x ,  y) induces a bijection between £(m,,,) and 

/~k ( re,n)' moreover ~(Y(m,n)) = YI-m,,,) and A(ot(y) • Y(-m.n)) = - A ( y  • YIm.,n) for 

£k  " this proves the first relation. The proof of the second is similar. [] y C (m.n)' 

Note the following combinatorial consequence of Proposition 6(a). For (m,  n) ~ 772. 

denote by Y('m,n) the oriented path in 772 with origin (m, n), extremity (0, 0) and only inter- 

mediate vertex (0, n). 

i , , , I 
! i i l I 

Just by symmetry on the first diagonal of 77 2 , we have 

• ' = r ( k )  " A ( y .  Y(n,m))  = - - l } .  , ( k )  . A ( y  y(m,n)) l} = #{y  E ~[n.m)" #{V G /~(m.n) 
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Combining Propositions 5 and 6(a), we get 

r(k) "A(y  ' 1} #{y ~ r(k) " A(y • Y(m,n)) = - l} .  #{y E ~ ( m , n ) "  " Y ( m , n )  ) : : ~ ( m , n ) "  

R e m a r k .  Consider again the generating subset So = {x, y, x - I  , y - l }  of  F = H(7/). As 

in the beginning of  Section 2, the adjacency operator of  the Cayley graph G(F, So) is 

Aso = x + x -1 + y + y-I  ~ C*(F). Taking p = e 2rri° as an indeterminate, all the above 

information on powers on Ho can be lifted up to F ,  to yield results about powers of Aso. 

Indeed, viewing the a~)n's as Laurent polynomials in z, one has 

A k o =  Z a~, )n(z-l)xmyn" 
m , n E z  z 

In turn, this gives information on the walk-generating function of  G(F, So): for an element 

g c F ,  the associated walk-generating function is the formal power series Wg(Z) = 

z OO i M ( k ) 7 k  . (k)  k=0 " g  "~ where I,v~ is the number of  paths of length k from 1 to g in ~(F ,  So). 

Clearly Wg ~k) = (A~o3113g) so that, for g = ZLxMy N, the coefficient of  the term of degree 
. (k) (k) , _1, is precisely W~ . See also Lemma 5 below for L in the Laurent polynomial aM,N~Z 

more on the philosophy of "lifting" from 7/2 to H(7/). We now turn to other bounds on 

IIHoll. 
We already noticed in the final remark of  Section 3 that the bound of  Proposition 4 is 

good only in a neighbourhood of  ½. On the other hand, it is possible to get bounds that 

are good except in a neighbourhood of  ½, by a mere application of  the triangle inequality. 
Indeed, recall that 

Hok= Z a~, )n(p)U~nV~ 
m,nEZ 

and set 

F gk(O) = Z a~,~(p) 
Lm,ncZ 

we then have II no II ~< gk (0) for any 0 c [0, 1 ] and 8 k 6 ~. It is experimentally found that, 
at least for k even, this bound is very good, see Fig. 3. 

This can be partially explained by the following result. 

P r o p o s i t i o n  7. 

(a) For any k E [~, 0 ~ [0, 1], gk(O) <_ gk(O) = 4 .  
(b) Fork even, gk(1) = 2x/2. 

8 For k = 2, this is nothing but the "diamagnetic inequality" II 14o II 5 4 cos ½ rr0 (0 ~ [0, ½ l), which seems 
to be well known to physicists. 
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i 2(1+ "¢'~+c~(2~8)) 

S 

0 0.1 0.2 0.3 0.4 O~ 

Fig. 3. 

2.113. 

0.48 

\ 

2(1+ ",/-'2+cos(2xO)) 

0A9 0.5 

Proof 
(a) By Proposition 5, the a~)n (p) ' s  are trigonometric polynomials with non-negative coef- 

ficients, so that la~,)o(p)l < a~)n(l) and gk(O) < [Y~m,nja~)n(l)] Uk ---- gk(0). Now 

~m,ne~_a(mk)n(l) is just the number of  paths of length k in 2~ 2 with origin (0, 0): this 
number is equal to 4 k. 

(b) We begin with: 

Claim. Let 0 = p/q  be rational. Let X = ~m,nJ_ Cm,, Uff' V~ be the Fourier expansion 
of an element X c A0 with Cm,n >_ 0 for any m, n. Assume that there exists integers 
r, s with q dividing rs such that X ~ C*(U~, Vb~), the C*-subalgebra generated by 

U~ and V~ (this means that Cm,n ---- 0 except if r divides m and s divides n). Then 

IlXll = Zm.nE2_ Cm.n" Indeed one has Vb~U~ = p r s u ~ w ~ "  = U ~ V ~  ~ so that C*(U~, Vh") 
is abelian. Let then X: C*(U~, V~)p > C be the trivial character, defined by x(U~)  --- 

x(V~) = 1. By continuity of  X we have x (X)  = Y~m.nezCm,n < IlXll, the reverse 
inequality is obvious. 
To prove Proposition 7(b), we take 0 ---- ½, X : H12~2 , and we apply the claim with 

r = s = 2: it gives gk(½)  21 = IIH2~211 = [[HI/22l II = (2x/2) 2/- [] 

Remarks.  
(1) For 0 = ½, the fact that HI2~2 belongs to C*(U 2, V 2) has the following combinatorial 

consequence: for m, n odd integers, the number of  oriented paths y in ?72 with origin 
(0, 0), length 21, and A( V • Ym,n) even, is equal to the number of oriented paths y in ?72 

with same origin, same length, and A (y • Ym,n) odd. Of  course this can also be proved 

directly. 
(2) For 0 = ¼, the claim in Proposition 7 applies to (14o 2 - 4) 2, allowing one to give an 

upper bound on 0 > II 11o II that yields the correct value 2~/~ both at 1 and ½, and the 
correct value 4 at 0. 

Finally let us just remark that the tracial state on .-4o can be used to get lower bounds 
on Ilno II- Indeed, it follows from measure theory (see e.g. [HRV93a, Lemma 8]) that, for 
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Table 1 
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1 2 
2 2.114742527 
3 2.195514639 
4 2.258100864 
5 2.308804851 
6 2.350888285 
7 2.386373823 
8 2.416664162 

9 2.442792734 

10 2.46554511 19 2.586734171 
11 2.485528971 20 2.594971276 
12 2.503219974 21 2.602603395 
13 2.518994081 22 2.609697173 
14 2.533151187 23 2.616309679 
15 2.545932671 24 2.622490069 
16 2.557537987 25 2.628280919 
17 2.568117362 26 2.633719301 

18 2.577813758 IIH~/211 2.828427125 

any self-adjoint operator H in A0. l[ H II = limk-->o~ r0 (n2k)  I/2k. We apply this to Harper 's  

operator 14o. 

Propos i t ion  8. 
(a) For any k E t~, the function fk: 0 i > "co (H 2k) l/2k is a C ~-function on [0, 1 ]. 

(b) For any O E [0, 1], the sequence (fk(0))k_>l increases to IIH011. 
(C) The sequence o f  functions (fk)k>l converges uniformly on [0, 1] to 0i > II 14o II. 

Proof  

(a) The function 0~ > v$o(H 2k) is a non-negative trigonometrical polynomial.  

(b) By H61der's inequality with p = (k + 1)/k,  q = k + 1, we have 
fk(O) 2k : to(Hzk)  < ro(HZk+Z)k/(k+l)ro(1) 1/(k+l) : fk+l (0) 2k. 

(C) Since the limit function 0 i > II Ho II is continuous [E1182], this property follows from 

(b) and Dini 's  lemma. [] 

R e m a r k .  Numerical calculations show that the convergence of  the sequence (fk (O))k>_l is 
I very slow. Table 1 illustrates this slowness at the point 0 = ~. 

5. C o m b i n a t o r i a l  appl i ca t ions  

Proposition 3 gives the spectrum of  the adjacency matrix A on the Cayley graph G = 

G( H(Z) ,  S); indeed, we have A = 6hs (since G is regular of  degree 6), hence Sp(A)  = 

[ - 2  - 2~/-2, 6]. The combinatorial  Laplace A operator on ~ is related to A by A = 6 .1  -- A, 

so we also have 

Sp(A)  = [0, 8 + 2 ~ ] .  

Now G covers a family(~N)u>_l of  finite, 6-regular graphs obtained as follows: let H (77/N7/) 
be the Heisenberg group over the ring 7//N77, i.e. 

H(YlN77)  = 1 : x, y, z ~ Y l N Z  

0 
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OlN: H(7/) > H(Y_/NT/) be the reduction modulo N; this is a surjective homomor- 

Now let GN be the Cayley graph G ( H ( Z / N T / ) ,  uN(S)) :  this is a 6-regular graph 

vertices, and we denote by AN its adjacency matrix. Clearly Sp(AN)  c_ Sp(A)  = 

[ - 2  - 2x/2, 6]; moreover, it follows from [Liic94] that, for (Nk)k_>l an increasing se- 

quence of  positive integers with NklNk+l,  the spectral measure of  A xk converges weakly, 

for k i ~ oo, to the spectral measure of A. This implies in particular that, for k i ~ c~, the 

lowest eigenva]ue ~,min(Nk) of ANk converges to --2 -- 2x/2. 

The independence number i (X) of a finite, k-regular graph X is the maximal number of 

pairwise non-adjacent vertices in X. It is an unpublished result of Hofmann (see [Hae] tbr 

a proof) that 

1 
i (X) _< IXl 

1 - -  k/~.min(X)" 

For the graphs ~N, using k = 6 and ~-min(X) > - 2  - 2x/2, one gets: 9 i(GN) _< 0.446. N 3 

We now turn to applications to asymptotics of closed paths through the origin in the 

2k i.e. the number of closed square lattice 7/2. We denote by N(2k)  the cardinality of/2(o,0 ), 

oriented paths through (0, 0), of  length 2k in Z 2. It is well known (see e.g. [DS84, 7.3]) 

that 

N ( 2 k ) = Z  l , l , k - l , k - I  = 
1=0 

From this, it follows easily (by Stirl ing's formula) that l i m k ~  N(2k)l /2k = 4 or, equiva- 

lently, that log N(2k)  behaves asymptotically like 2k log 4 : 

log N(2k)  ~ 2k log 4 

( ~  means that the ratio tends to 1 for k -+ oo). 

2k with area /; also, denote Denote by N(2k;  A = l) the number of  paths in £(0,0) 

2k whose area is congruent to by N(2k;  A =-- l (mod q))  the number of  paths in /~0,0) 

/ modulo q. Next lemma is that log N(2k)  ~ log N(2k;  A = 0). This seems to indi- 

cate that, in the decomposit ion N(2k)  = Y~4 N(2k: A = l), the term N(2k: A = 0) is 

dominant. 

L e m m a  5. limk__, ~ N (2k; A = 0) l/2k = 4; in other words log N (2k: A = 0) ~ 2k log 4. 

Proof  Let St) = {x, y, x - l ,  y - I }  be the generating subset of F = H(7/) appearing in 

Lemma 2. View the Cayley graph G ( F ,  So) as a covering of the square grid, via the map 

9 For a finite k-regular graph X, there are combinatorial quantities which are known to depend on ~-min (X) ; 
this is the case of the chromatic number or the number of spanning trees [Big93, 8.8, 6.5]. But for the 
GN'S these applications are deceptive: indeed the ratio k/(--2,min(GN)) ~ 6/(2 + 2x/2) is too close to I 
to be of any use. For example, if X (X) is the chromatic number of the finite k-regular graph X, one has 
x(X) > I + k/(-kmin(X)); here X(~N') > 1 + 6/(2 + 2x/2) just gives the obvious fact that ~A" is not 
bipartite. 
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F > F / Z ( F )  _~ 7/2. Viewing F as a central extension of  7/2, we may consider the 

2-cocycle c on 7/2 giving this central extension: it is 

c ( ( m l , n l ) , ( m 2 ,  n 2 ) ) = d e t  ml m2 , 
nl n2 

which is nothing but the oriented area of the parallelogram on (m 1, n l ) and (me, n2). Let 

then y be a closed curve through (0, 0) in 7/2; we lift this curve to a curve )~ in G ( F ,  So), 

starting at the identity. It follows from the above considerations that the endpoint of  ~ will 

be z A<×). In particular, y will lift to a closed curve in ~ ( F ,  So) if and only if A ( y )  = 0. 

This shows that N (2k; A = 0) is exactly the number of  closed curves of length 2k through 

the origin in ~ ( F ,  So). Since F is amenable and G ( F ,  So) is a 4-regular graph, we have 

limk_+~ N(2k;  A = 0) 1/2k = 4 by Lemma 2.2 in [Kes59b]. [] 

R e m a r k .  It is also possible to prove this lemma by exploiting Propositions 5 and 8, but the 

above proof, suggested by E. Ghys, is more conceptual. 

Proposition 9. For 0 = p/q ,  

F ] log , S  e-2Zrilp/qN(2k; A =-- 1 (modq) )  ~ 2k log Ilno Il- 
L/=0 

This follows immediately from Propositions 5 and 8. Note that, by Lemma 5, the term 

N(2k;  A --= 0 (mod q))  is "dominant" in the above sum, in the sense that log(N(2k;  A - 

0 (mod q)))  ~ 2k log4 .  Let us spell out Proposition 9 in the case of some simple frac- 

tions: 

- f o r0  = l ,  we have liB01[ = 2~/2 and 

log(N(2k;  A --= 0 (mod 2)) - N(2k;  A ------ 1 (mod 2))) ~- k log 8; 

- for 0 = ½, we have I111o II = 1 + v '~  and 

log(N(2k;  A --  0 (mod 3)) - N(2k;  A --  1 (mod 3))) ~ 2k log( l  + v/3) 

(indeed N(2k;  A --  1 (mod3))  = N(2k;  A --  - 1  (mod 3))); 

- for 0 = 1, we have F114o II = 2V'2 and 

log(N(2k;  A --  0 (mod4))  - N(2k;  A --  2 (mod4)) )  ~ k log 8. 

Acknowledgements 

We thank A. Barelli, J. Bellissard, G. Elliott and S. Zelditch for some useful discussions 
and correspondence. 



C. Bdguin et al./Journal of Geometry and Physics 21 (1997) 337-356 355 

Appendix 

Lemma A.1. For any x,  y E •, the two.following inequalities hold: 

(I + v/2 + cos(x) -- cos (y) ) ( I  + x/2 + cos(x)  - cos(y -+- x))  > 1. 

Proof  Both inequali t ies are equivalent  by the change of variables x ~ - x .  We work with 

the first one (with a "+"). Using the change of  variables x w-~ x + rr, it is still equivalent  to 

the inequali ty 

(I + x/2 - cos(x)  - cos (y ) ) ( l  + v/2 - cos(x) + cos(y + x)) >_ 1 

that we prove, by restricting to x, y ~ [0, 2Jr]. 

Consider  the polynomial  P(t ,  u) = 4t 4 + t2(1 + 4~/2) - 2tu(x/2  + 2t 2) + u 2. 

Claim. F o r 0 < t  < 1, u < l ,  P ( t , u ) > O  

Assume this claim for the moment ,  the inequali ty of  the claim can be re-written 

(x/r2 + 2t2) 2 -- 2 tu (V /2+ 2t 2) + tZu 2 -- (1 -- t2) ( l  -- U 2) > 1. 

Setting t = sin(½x),  u = sin(½(x + 2y))  and using standard tr igonometric formulas then 

proves the desired inequality. 

To prove the claim, we consider  Pt(u) = P(t ,  u) as a quadratic po lynomia l  in u with 

parameter  t; its d iscr iminant  is t 2 [4t 4 - ( 4 -  4 v ' 2 ) t  2 + 1 - 4v/2].  The biquadrat ic  polynomial  

4t 4 - (4 - 4x/2) t  2 + 1 - 4x/2  has a unique root t + in [0, 1]. So the discr iminant  is non-  

positive for 0 < t < t +, which already proves the c la im for 0 < t < t +. On the other hand, 

for t + < t < 1, the same biquadrat ic  polynomial  increases from 0 to 1, which yields the 

inequali ty 

1 + t(1 - x/2) > 1 + t [(4t  4 - (4 - 4 v ' 2 ) t  2 + 1 - 4v/2)  1/2 - x/2]. 

The left hand side is less than 2t 3 on [t +,  1], this leads to the inequali ty 

1 < (2t 2 + x/2)t - t~/4t 4 - (4 - 4v/2) t  2 + 1 - 4v/2,  

where the fight hand side is noth ing  but  the smallest  root of  the equat ion Pt (u) = P(t ,  u) = 

0, expressed as a funct ion of  t. This  shows that for t + < t < ! and u < 1, one has P, (u) = 

P(t ,  u) > O, complet ing the proof  of  the claim. [] 
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